
UNIVERSITY OF NOTRE DAME-ELECTRICAL ENGINEERING

Low-Level Design
Team AutoBev

Elizabeth Clark, Lorena Garcia, Alex Macomber, Mark Pomerenke

2/18/2011

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 2 Low-Level Design

Contents
1 Introduction .. 4

2 Problem Statement and Proposed Solution.. 4

3 System Description and Block Diagram .. 5

4 System Requirements .. 6

4.1 Overall System: .. 6

4.2 Subsystem and Interface Requirements:... 6

4.3 Future Enhancement Requirements ... 8

5 Low Level Design .. 9

5.1 Card Scanner ... 9

5.2.1 Hardware Decisions ... 9

5.1.2 Testing ... 10

5.2 User Interface ... 10

5.2.1 Physical Unit ... 10

5.2.2 Software Design Decisions ... 10

5.2.3 Software Flow: .. 11

5.2.4 New Classes ... 13

5.2.5 Testing ... 13

5.3 Bartender Interface .. 14

5.3.1 Interface Design ... 14

5.3.2 Testing ... 15

5.4 Microcontroller .. 15

5.5 Beverage Dispensing and Sensing ... 16

5.5.1 Flow Sensing ... 17

5.5.3 Valve Permission Solenoid ... 17

5.5.4 Emergency Stop ... 18

5.5.5 Microcontroller Software.. 18

5.6 PC to Microcontroller USB Interface ... 21

5.6.1 USB Hardware: ... 21

5.6.2 Testing: .. 22

5.6.3 PC to Microcontroller Protocol .. 23

6 Bill of Materials .. 24

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 3 Low-Level Design

7 Conclusions ... 25

8 References ... 26

8.1 Spec Sheets ... 26

8.2 General Information ... 26

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 4 Low-Level Design

1 Introduction

In an environment where profit is dependent upon efficiency of product delivery, it is evident that

a major source of missed revenue comes from lengthy wait times. A place where this problem is

often seen is at overcrowded drinking establishments. Here, the drawn out process of ordering

a drink, followed by waiting for completion of a transaction leads to much wasted time.

With the technology available in our current society, it is apparent that waiting times can and

should be reduced. Much of the time associated with this process can be eliminated if the initial

stage is automated. Through the utilization of a computer system that provides a means to

order, pay for, and pour a beverage, without dependence on a restaurant employee, the time

between request and delivery of a final product can be greatly reduced and streamlined.

The AutoBev system will be beneficial to any establishment that wishes to decrease wait times,

increase the accuracy of orders, reduce the workload of employees and increase revenue.

2 Problem Statement and Proposed Solution

The efficiency of most drinking establishments today is less than spectacular. Patrons can

spend the majority of their night waiting to be noticed by a bartender. Once noticed, the

transaction between patron and server can last for several crucial minutes that could be spent

on serving other customers.

In order for a transaction to be completed, a patron must first be recognized as the next waiting

customer by the bartender. The patron then explains his or her order to the server who then

proceeds to make the specified drink. After the drink is served to the customer, the bartender

tells him or her the price of the order and the customer in turn pays the bartender by the

preferred method of payment. Regardless of payment choice, the payment transaction is very

time consuming. Bartenders must enter the order into a touch-screen, swipe a card or open the

register, print a receipt and have the patron sign the receipt.

The entire process of ordering a drink at a bar can be both time consuming and a frustrating

experience for the server and customer. If a bar were to be able to serve drinks more

frequently, then its revenue would increase. Another problem with the current system is that

patrons tend to be served out of order which in turn decreases customer satisfaction.

The proposed solution for a more efficient ordering and payment system at a bar is to have an

interface that allows for customers to place their orders without assistance from an employee.

Customers will swipe their credit cards to login into the system, order and pay for their drinks

independently.

The customer has the choice to purchase a “pour your own” drink or to place an order with the

bartender. If the customer chooses to pour their own, he or she will place a cup underneath an

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 5 Low-Level Design

adjacent tap and the press a button to dispense the beverage. Customers will have the option

to purchase a preset amount (i.e. a 60 ounce pitcher) or pay per ounce.

3 System Description and Block Diagram

The AutoBev Dispensing System will increase the efficiency of an establishment by effectively

restructuring the drink ordering process. The system will have an interface that allows the user

to either pour their own beverage at the AutoBev Kiosk, or to select a drink to be added to a

queue which will then be prepared by a bartender. The system will personalize the ordering

experience by storing user information, preferences, and history into a database. This

information will be displayed on the user interface during the ordering process. There will be

communication between the user interface and the bartender interface. The bartender will

receive drink orders and a corresponding drink order number from the user interface. The

bartender will also be able to indicate to the user interface the order number that is being filled,

and will be able to move through the drink queue after completing an order. The current order

number being filled by the bartender will be displayed at all times on the user interface. The use

of the system can be seen in Figure 1 below.

Figure1. System Use Flow Chart

The AutoBev system will require the use of a magnetic stripe reader at the front-end in order to
read information from a user‟s credit card. This information will be used to create and access
user accounts. After a card is swiped, a database will be queried to determine if the user has
an existing account. If they do not already have an account, one will be created. A
personalized session will then begin on the user interface and the user will navigate through
the interface to select and order drinks.

The user interface will be in constant communication with the bartender interface so that the
drink queue can be updated each time a new order is placed. It will also be in constant
communication with the microcontroller so that the microcontroller will open and close the
solenoid valve at appropriate times. Additionally, the microcontroller will communicate data
from its sensors (flow and light) back to the user interface.

The database will store user account information and will be updated by the user interface
upon completion of a session. The database will hold both static values of name and card

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 6 Low-Level Design

numbers, as well as dynamic values such as total volume consume, most popular drink,
estimated BAC, and bill balance.

A block diagram of the entire system can be seen below in Figure 2.

Figure 2. Block Diagram of System

4 System Requirements

4.1 Overall System:

Overall System Requirements

General Must be capable of receiving and processing drink orders digitally
Must use simple user commands for navigation (single click)
Must have a layer of protection between CPU and other sensitive electronics and
users/beverages

Size Must fit onto a floor area no larger than 2‟x2‟ (not including any keg)

Power Must be powered by wall plug in 120V AC

Compatibility Must be able to connect to a standard keg
Must be expandable to include more drinks
Must be in English
Must be in compliance with current health standards

4.2 Subsystem and Interface Requirements:

Magnetic Card Reader

General Must be able to scan credit cards and send information to the PC

Size Must not be bigger than 6”x6”

Power Must be powered through USB interface

PC Software Must be able to interface to a PC through USB
Must be able to emulate a USB Human Interface Device (HID) keyboard
Must turn on and off with PC

User Interface

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 7 Low-Level Design

General Must be implemented on a standard monitor

Power Screen must be powered by 120 V AC

Compatibility Must work on Windows PC
Will Be Programmed Using Microsoft Visual Studio
Will Program in C# Visual

Bartender Interface

PC Software Must be capable of running on a low performance windows machine
Must list drink items in order in a FIFO queue
Must assign item number to new drink items for claims purpose (will not need to
issue ticket)
Must be capable of adding orders to the queue from remote client (customer
interface)
Must be capable of deleting queue items from local user
Must be able to handle bi-directional communication via Local Area Ethernet
Must be compatible with UI program
Bartender Server must be multi-threaded for expandability

Microcontroller

General Must handle at least 8 digital inputs *
Must handle at least 4 analog inputs*
Must supply at least 4 digital outputs *
Must indicate the state of digital outputs with LED‟s
Must be programmable with C software
Must have a universal asynchronous receiver transmitter (UART)
Must be able to communicate serially with CPU over USB connection
Must have non-volatile memory
Must be capable of 3.3V operation.
Must have On/Off switch
Must have reset function

*will only use 2/1/1 I/AI/O ports for demonstration, but built in for expandability

Power Powered by 12 V supply from wall converter

Compatibility Will receive signal from computer
Will receive signal from flow sensor

Beverage Dispensing and Sensing

General Must have keg to pour drink from with
appropriate keg components (spigot, keg
adapter, pressure valve, tubing, and gas tank).
Must have a solenoid valve to only allow
beverage to pour through if already paid for.
Must have a flow sensor to keep track of how
much beverage has been poured.
Must have Cup Senor to detect if cup is present
Must have emergency stop

Power Must be powered via plug into a 120 VAC outlet
Must create intermediate regulated voltage power
supplies of 12 V and 3.3V

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 8 Low-Level Design

Valve Permission Solenoids Solenoids must receive 12 V across the coil to
activate
Must be able to control 12 V solenoid signal with a 3.3
V output
Amplifier FET must be able to handle 0.53 A, and a
max Vds of at least 20V
Must connect to 0.25” OD, .17” ID tubing

Flow Sensing Requires specified resistive network for proper signal
output
Requires 5-24V power supply
Must connect to 0.25” OD, .17” ID tubing

Cup Sensor Must detect if cup is present underneath spigot
Must ignore ambient light

Emergency Stop Must allow user to stop beverage flow if anything goes
wrong
Should rely on hardware only (not software)

Miscellaneous Tubing must be able to couple into 3/8” tubing

Microcontroller Software Must use a reasonable amount of program
memory
Must be able to communicate with
solenoid(open/close it).

 Must be able to get input from flow sensor
periodically.

Must be able to get input from cup sensor.

Must be able to communicate with User
Interface via USB PC to Microcontroller USB Interface

General Must have USB interface
User Interface PC must be able to communicate with
microcontroller by sending bytes
Microcontroller must be able to communicate with
User Interface PC by sending bytes

4.3 Future Enhancement Requirements

Future Enhancement Requirements

Online Database System should be capable of uploading the data into an online database.
This information will be accessed by the individual users who will have
accounts registered with the website. Data will show drink purchase
information such as time, quantity, type and expense.

Charge Credit
Cards

Must be able to charge the credit card of the patron. This will be an upgrade
from the current proposed version that simply stores the credit card
information in a local database without charging the account.

Interfacing with
Mobile Device

Must be able to use an smartphone application to complete beverage order
and add the order to the queue
Must Send text message to smartphone when drink is ready

Serve Mixed
Drinks

Must be able to properly make and serve “mixed drinks”

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 9 Low-Level Design

Cognitive Testing Must be able to determine if customer is in suitable state for another drink

Interconnect
Multiple Kiosks

Must allow for multiple dispensing units to be interacting with a centralized
bartender interface within a single establishment

5 Low Level Design

5.1 Card Scanner

5.2.1 Hardware Decisions

The magnetic stripe reader (MSR) will be placed alongside the customer interface so the
customer can scan his or her debit/credit card. The scanner must be a “plug and play” device
that simply connects to a USB port of a PC and emulates keyboard inputs without any
additional software. The customer enters the graphical user interface (GUI) with the scan of
his or her card. The system can then identify the customer and pull up his or her transaction
history.

Unitech‟s MS240 Magnetic Stripe Reader was chosen because the product meets all stated
requirements and is relatively inexpensive. The MS240 interfaces with a Mac or PC and
emulates a keyboard such that any running program will be unable to distinguish the MSR from
any ordinary keyboard.

The benefit of the MS240 is that it is programmable. Using the Reader Configuration Manager,
instructions can be downloaded to the MS240. These include but are not limited to: turning the
beeper on and off, choosing which tracks to display, deciding how information is displayed and
choosing the type of end character.

The card scanner will be programmed to output track one according to the ISO/IEC 7813
standard. This standard defines properties of financial transaction cards such as debit or credit
cards. There are three tracks on the cards conforming to this standard. The format of track
one which follows the format below.

Track 1, Format B:
Start sentinel — one character (generally '%')
Format code="B" — one character (alpha only)
Primary account number (PAN) — up to 19 characters. Usually, but not always, matches the
credit card number printed on the front of the card.
Field Separator — one character (generally '^')
Name — two to 26 characters
Field Separator — one character (generally '^') Expiration date — four characters in the form
YYMM. Service code — three characters
Discretionary data — may include Pin Verification Key Indicator (PVKI, 1 character), PIN
Verification Value (PVV, 4 characters), Card Verification Value or Card Verification
Code (CVV or CVK, 3 characters)
End sentinel — one character (generally '?')

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 10 Low-Level Design

Longitudinal redundancy check (LRC) — it is one character and a validity character
calculated from other data on the track. Most reader devices do not return this value when the
card is swiped to the presentation layer, and use it only to verify the input internally to the
reader.
For example:
Track one of a Discover credit card:
%B0123456789012345^LAST/FIRST ^YYMMXXXXXXXXXXXXXXXX?
Track one of a Visa debit card:
%B0123456789012345^LAST /FIRST M^YYMM XXXXXXXXXXXXXXXXXXX?

5.1.2 Testing

In order to test the magnetic stripe reader, a word editor was opened and the MS240 was
plugged into a USB com port. Ten unique cards were then swiped and the output track was
verified. The cards varied between credit and debit and between card companies.

5.2 User Interface

5.2.1 Physical Unit

The user interface will be implemented on a standard PC monitor. The user will interact with
the interface using a mouse. The choice to use a standard PC monitor, as opposed to a touch
screen, was made after experiencing difficulties in finding a touch screen for a reasonable
price. Regardless of the fact that the AutoBev system will be demonstrated using a standard
PC monitor controlled with the use of a mouse, the system will also be compatible with a touch
screen. This is because tapping a touch screen is interpreted in the same manner as is clicking
a mouse. The AutoBev Kiosk will be built such that any standard computer can fit inside.

5.2.2 Software Design Decisions

In order to develop the user interface, we chose to create a GUI using the Microsoft Visual
Studio IDE. After experimenting with a few of the languages supported by this environment,
we decided that the best way to achieve a professional-looking and easy-to-use interface was
to program using Visual C#. The combination of Microsoft Visual Studio with Visual C# has
allowed us to access many useful predefined libraries which will help to enable
communication between the user interface and both the microcontroller and the magnetic
stripe reader.
Another useful feature of Microsoft Visual Studio is that it allows for the creation of a type of
project called a “Windows Form Application.” Using this project framework, we have been able
to create multiple forms, or screens, with which the user will interact. The ability to separate
each step of the drink ordering process by creating a new form has greatly simplified the
development of the interface.

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 11 Low-Level Design

5.2.3 Software Flow:

The user interface will be a means to display step-by-step instructions to the user in order to
guide them through the process of both purchasing a specialty drink (i.e. one that needs to be
made by a restaurant employee) and of pouring a beverage on their own.

Upon approaching the AutoBev System, the customer will be presented with the Welcome
Screen Form. This will instruct the user to swipe their credit card. The information read from
the credit card will be input into a text box located within the form (the MSR acts in exactly the
same manner as a keyboard). This textbox will be continuously polled for changes in input.
Anytime a new character is detected, a KeyPressed event is triggered that stores that
character in a buffer. The last character in a credit card track is a question mark. Therefore, in
order to determine when the credit card number has been completely read, each character
detected by the KeyPress event will be compared to a question mark. When the question mark
is detected, the characters in the buffer will be stored as the card number.

When a card scan is completed, a new instance of the class, „Person‟ will be created. This
class is located in the namespace, „Customer.‟ This class has as attributes, „cardNumber‟ and
„sessionTotal.‟ The‟cardNumber‟ attribute will hold the current customer‟s card number for
identification purposes. The „sessionTotal‟ attribute will hold the amount that is to be added to
the customer‟s current total purchase in the database. Each time a new customer uses the
AutoBev dispensing unit, these attributes will be reset. A Person‟s „sessionTotal‟ will always
begin at $0.00.

Once the cardNumber attribute of the new Person has been set, it will be used to query a
database to check for the existence of an account associated with that number. If an existing
account is not found, one will be created. In addition to holding the card numbers of each
customer that has used the AutoBev System, the database will also hold the user‟s total tab for
the night. This information will be used for billing purposes when the user decides to close their
tab.

The program will then progress to the Drink Type Selection Form as seen in figure 3. This form
presents the user with two options. The user may chose to either order a drink that will need to
be made by the bartender or to dispense their own beverage. The choice will dictate which
form appears next.

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 12 Low-Level Design

Figure 3. Type Selection Form

If the user chooses to order a specialty drink, they will be presented with a list of possible drink
choices. Upon choosing a drink, the „sessionTotal‟ attribute will be increased by the price of
the drink (stored as a variable within the Specialty Drink Selection Form). Simultaneously, a
function to send the drink order to the bartender interface will also be called in order to update
the queue on the bartender interface. This drink order will be sent via a computer network.

If the user chooses to dispense their own beverage, they will be asked if they would like to pay
by the ounce, or if they would like to dispense a predetermined amount of beverage. If they
choose to dispense a predetermined amount, they will then be prompted with a screen that
allows them to choose from a selection of sizes. Based on the selection of size, a variable
called „limit‟ will be set and passed to a screen that contains a start and stop button. If the user
chooses to pay by the ounce, the limit will be automatically set to 221.6 oz (see Section 5.6.2
for explanation), and the user will be presented with the Start and Stop Pour Form, which can
be seen below in figure 4.

Figure 4. Start and Stop Pouring Form

As soon as the user clicks the start button on this form, a signal to open the solenoid valve will
be sent to the microcontroller via USB. The bytes and the information that they contain can be

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 13 Low-Level Design

seen in section 5.6.2. The user may start and stop pouring multiple times within one order.
The order will end when the user selects the finish option on the Start and Stop Form, or when
the microcontroller sends a flag indicating that the limit of the order has been reached. At this
time, the solenoid value will close and the AutoBev dispensing unit will stop pouring. Each
time the microcontroller sends bytes to the interface, the amount of liquid dispense will be sent,
regardless of if the user is paying per ounce, or dispensing a predetermined size. When the
user chooses to finish ordering, that limit will be used to calculate the user‟s total charge. The
sessionTotal attribute of the current instance of Person will be updated.

Upon finishing an order, the user will be prompted with the Thank You Form. This form will give
the option of ordering again, or checking out. A user may choose to checkout by ending their
current session, or by closing their tab for the night. In either case, the cardNumber attribute of
the current person will be used to access their account within the database. The account total
in the database will be increased by the charges stored in the sessionTotal attribute. The
current instance of „Person‟ will then be destroyed in preparation for a new session with a
different user.

A user may order as many times as they please within a single session. The sessionTotal will
be continuously updated during this time. Only at checkout will the database be queried for the
„cardNumber‟ and only at that time will the total purchase in the account be updated.

5.2.4 New Classes

Classes:

A new class called „Person‟ will be created. It will exist in the namespace, „Customer.‟ This
class will have two private fields. The first is a private string called „cardNumber.‟ This field can
be accessed with the CardNumber property which contains set and get methods. These
methods allow the program to update and access the private card number of the customer.
The second private field is a private double called „sessionTotal.‟ This field can be accessed
with the SesssionTotal property, which also contains set and get methods. These methods
allow the program to update and access the total charges that a customer has accrued within a
single session. When the customer chooses to end a session, the field containing the card
number
will be used to query the database and identify the customer. The amount contained in the
session total field will be used to update the customer‟s total purchase for the night that is
stored in the database.

5.2.5 Testing

The user interface will be tested by stepping through each path that a customer may take while
ordering a drink. Through this process, it will be possible to verify the functionality of each
command. In order to ensure that each function is executing when required or expected,
verification statements will be output to a text file at strategic points within the interface. This
text file can then be opened and will essentially display the progression of the customer
through the interface.

Additionally, each button on every form will be tested. This can be done deterministically by
pressing every button on every form and verifying that the appropriate next form appears.

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 14 Low-Level Design

Various values will be input for card numbers to make sure that the program operates in
the expected manner, and is capable of determining when an input does not make sense.

Once the interface is integrated with the microcontroller and flow sensing hardware, tests will
be run to ensure that the volume returned by the microcontroller is in fact the volume that has
been dispensed. It is vital that this measurement is extremely accurate for charging purposes.

In order to make the software as resistant to errors as possible, „try-catch‟ statements will be
added within each function. These statements will guarantee that any error that is
encountered during program execution will be handled in a systematic manner. It will also
ensure that an error encountered during run-time will not cause the system to crash.

Although it will not be possible to write computer-testing algorithms for the user interface,
by writing code with error-handling capability and through careful testing, it will be possible
to ensure the functionality of the user interface. The possible paths that a user can take
through the interface can be seen below in figure 5.

Figure 5. Flow Chart Demonstrating Paths Through User Interface

5.3 Bartender Interface

5.3.1 Interface Design

The bartender server will serve as a database of recently ordered specialty drinks. The
software must allow the bartender to read drink entries made by the customer at the user
hub, and then delete the orders after they have been prepared. This must be a fairly
simple display in order to speed up drink production, and will only entail a drink list
updated with additions from the User hub, and options for the bartender to scroll through
the orders and delete selected drinks.

A UDP Server/Client protocol will be used for communication between the two computers,
the User and Bartender hub, over a local area connection using Cat 5e Ethernet Cable. A
UDP protocol was chosen because the amount of information being communicated will be
extremely small and will only need to be sent occasionally in packets, ideal for UDP. The
protocol must be written in C# so that it will seamlessly interface with the customer
interface. The client UDP protocol program will be embedded within the UI program as a
separate function file, which will be called by the UI program when a specialty drink is
ordered.

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 15 Low-Level Design

The bartender interface will act as the server with capability to open multiple
communication threads. This will allow the owner to add multiple machines to the system
both locally and remotely by simply connecting the system to the internet.

5.3.2 Testing

The bartender interface will be tested by verifying that the drink selected on the user
interface is properly displayed on the bartender interface along with its assigned drink
order number. This process will be repeated for each possible drink selection. As drinks
are ordered, it will be necessary to test that the bartender interface is updating correctly.
Due to timing constraints, it will not be possible to write code to implement these tests.
Therefore, the testing will be carried deterministically. Deterministic testing will also be
used to ensure that the bartender can update the drink order that is currently being filled
that is displayed on the user interface.

A flow chart of the UDP Client/Server with functions can be seen in figure 6.

Figure 6. Flow of Bartender Interface

5.4 Microcontroller

The microcontroller used as the embedded intelligence for this project is the
PIC18LF6722, which meets all of the requirements specified in section 4.2. A schematic
of this microcontroller with the pins connected to I/O signals can be seen in the figure 7
below. Further information on the microcontroller function and additional circuitry and
hardware that must be implemented on the board the microcontroller will come on are
discussed in the following sections.

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 16 Low-Level Design

Figure 7. Microcontroller Schematic

5.5 Beverage Dispensing and Sensing

After a drink has been ordered, this feature will allow for drinks that do not need to be
made by a bartender to be instantly available. The computer that serves as the user
interface will communicate with the microcontroller via a USB interface, which will control
all functions associated with a keg. Customers should be able to place their cup under a
tap and manually pour their selected beverage once they have completed all necessary
steps on the user interface. The mechanical system to control flow will be created to
connect to a keg of liquid. In order to keep a constant pressure in the keg, a gas tank with
a constant pressure valve will be needed. One of the team members already has a
kegerator and the rigging. The tubing for the keg has been purchased separately. Thus,
the needed spigot, keg adapter, pressure valve, gas tank, and tubing are already
available. The solenoid valve will be attached to the part of the tube close to the tap and
will be actuated by a digital output from the microcontroller. The microcontroller will signal
the solenoid to open if a customer has placed their order and is manually trying to pour
their drink. A flow sensor will be placed in the flow path to send a signal to the
microcontroller which will specify how much drink has been poured for pricing purposes
and to monitor flow in case the customer opted to have a specific amount of drink poured
rather than to pay by ounce. We will also have a cup sensor by the tap to indicate that a
cup has been placed there in the chance that someone is trying to pour a drink without a
cup. Additionally, we want to utilize an emergency stop that is independent of the software
in case anything goes wrong and we want to stop beverage flow. Upon completion, the
microcontroller should send information back to the user interface so that the tab can be
updated.

Note that our system is designed with two flow sensors, two cup sensors, and two
solenoids in order to handle multiple beverages. The microcontroller board will be
designed to hand up to four of each to allow for expansion, so that a venue may offer

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 17 Low-Level Design

more beverage options. The actual system demonstration will only utilize one of the sets
which will be attached to the output of a Danby 5.8 Cu. Ft. Capacity Keg Cooler (Model #
DKC645BLS).

5.5.1 Flow Sensing

The SwissFlow SF800 flow sensor will be supplied by a 12V source and will require a
resistive network as seen in figure 8 below. The output of the sensor is a pulsed output
that generates 5600 pulses/liter. The flow sensor will allow the microcontroller to know
how much liquid has been poured. By counting the pulses we can calculate the volume
and flow rate of the liquid that is passing through the tube.

Figure 8. Flow Sensor Circuit

A cup sensor will act as a safety for the system such that a beverage will not be
dispensed unless there is a cup present beneath the spigot. An OSRAM 30 mm Proximity
Sensor (SFH 7741-Z) will be used to detect the cup and will communicate the cups
presence to the microcontroller via an analog input. The sensor will require a 2.4-3.6V
power supply which is satisfied by the microcontroller 3.3 V source.

5.5.3 Valve Permission Solenoid

The solenoid serves as the main action unit as it will open or close to allow or stop the
beverage from flowing. The ECT 12 V solenoid (US5311162) is a normally closed valve
that will open when 12 V is applied to the coil. The internal resistance of the solenoid coil
is about 23 ohms, therefore to switch open the solenoid requires about .53 amps. A
power MOSFET, NDS355, was chosen appropriately for the coil driving circuit, which is
driven by a 3.3V digital output applied to the gate, this digital output will have a
corresponding indicator LED for troubleshooting so that the owner can check the status of
the solenoid. The driving circuit can be seen in figure 9 below.

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 18 Low-Level Design

Figure 9. Solenoid Circuit

5.5.4 Emergency Stop

As a final failsafe the circuitry will also involve an emergency stop button that will close the
solenoid in case of error. This will provide an easy way to manually close the solenoid,
and will be implemented as a toggle switch that will connect or disconnect the solenoid
from VDD.

5.5.5 Microcontroller Software

The control of the beverage dispensing and sensing subsystem relies on a program
written in C that is programmed into the microcontroller. The main aspects of this program
are discussed in the following paragraphs.

This program will rely heavily on the use of several interrupts on Port B of the
microcontroller for flow control. One interrupt flag comes from bit 1 of Port B and is
triggered by pulses from the flow sensor. The other interrupt flag comes from bit 2 of Port
B and is triggered by pushing a button to indicate the desire to pour a beverage. This
interrupt is solely for testing purposed to show functionality of the drink dispensing
subsystem. For the completed project the button and corresponding interrupt will be
removed as the desire to pour will now be sent from the user interface to the
microcontroller via USB. Another interrupt will also be on PortB and will correspond to the
cup sensor. This interrupt has not yet been established in our working code. There are
three current variables that will be effected by these interrupts. These are
increaseVolume, volFlag, and openSolenoid. Each variable is initially set to false and will
be changed to true at different points in the program. The first variable, increaseVolume
will be true when an interrupt occurs indicating a pulse from the flow sensor is detected.
The variable openSolenoid will be true when an interrupt occurs indicating the button is
pressed. The volFlag variable will be true when a volume limit set later in the program is
met. It is necessary that the interrupt functions come before the main program so that they

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 19 Low-Level Design

will work properly. When the two given interrupts are sensed they will change the state of
the previously mentioned variables and reset their given interrupt flags, so as to escape
the interrupt. Our program must also have a variable for the cup sensor input, which will
be set to true when a cup is sensed and to false when no cup is sensed. This variable
should also be initialized to false before the main program.

In the main program it is necessary to set intcon, intcon1, and intcon2 to the appropriate
high and low bit sequences so as to enable global interrupts, intedge interrupts, and the
interrupt flag. The LCD screen is to be initialized for testing purposes. Input and output
ports will be set on Port B. These will include inputs for the flow sensor pulses and button,
so the microcontroller can receive signals to monitor the flow. An output will also be set for
the microcontroller to be able to send signals to the solenoid in order to have it close or
open as desired. The variable volume will be initialized to 0 for use in the main function.
An appropriate message will print to the LCD and terminal for testing purposes to indicate
that the button be pushed for beverage pouring to begin. At this point the main function
will have a while loop that does nothing while waiting for the button to be pressed and for
a cup to be sensed. When both of these given variables are set to true the program will
escape the while loop and move on.

When the button is pressed volFlag will be set to false and a high output will be sent to the
solenoid in order to open the valve and a message will be printed for testing purposes
indicating that the beverage is being poured. The variables conv, inc, and limit will be set
to 165.6, 1, and 1400 respectively. The conv variable indicates the amount of
pulses/ounce given by the sensor. The inc variable is to allow for increments of 1 for each
pulse. The limit variable is to allow us to check that our subsystem works in dispensing a
specific amount of volume and is set to 1400 for testing purposes. The program will enter
a while loop that will continue looping until the volFlag variable is true, or when the limit of
1400 pulses is reached. Within the while loop, if pulses from the sensor are received the
volume will increment by inc and the interrupt flag for the pulses will be reset. While this is
happening, if volume exceeds limit a low signal will be sent to the solenoid indicating that
it should close and volFlag will be set to true, which will cause the program to exit the
while loop. The amount of beverage poured will be calculated via the equation (volume-
inc)/conv and this value will be printed to the terminal and LCD. This will aid in the testing
of the accuracy of the beverage dispensing subsystem as we can compare the measured
volume to volume that we measure physically before testing.

We have already written a rough draft of the program to be used based on the functions
and variables explained in the above paragraphs and flow chart. We have been
programming updated versions of this program to the microcontroller provided to us in the
project kit via the USB also provided to us. Testing has been done by connecting the
appropriate input and outputs to Port B as indicated above and in the following code. For
testing of the subsystem we have been filling a bottle with water and allowing the water to
flow through the tube that is connected to the solenoid. This program has been executing
successfully for testing and will continue to be used and modified as needed. We currently
need to modify it to include the cup sensing variable. The basic logic behind this has
already been explained above and is currently noted through comments in the code. The
current code can be seen in figure 10 below.

---/*

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 20 Low-Level Design

AutoBev
Drink Dispensing and Control Program
*/

#include <system.h>
#include "task3lib.h"
#include "LCDlib_4.h"
#pragma DATA _CONFIG1H, _OSC_HS_1H
#pragma DATA _CONFIG2H, _WDT_OFF_2H
#pragma DATA _CONFIG4L, _LVP_OFF_4L & _XINST_OFF_4L
#pragma DATA _CONFIG3H, _MCLRE_ON_3H
#pragma CLOCK_FREQ 20000000

// variable for INTCON register interrupt flag volatile bit toint@INTCON.2;
volatile bit intedge1@INTCON2.5;
volatile bit int1IF@INTCON3.0; // interrupt flag for port b, bit 1 (flow sensor pulses)
volatile bit int2IF@INTCON3.1; // interrupt flag for port b, bit 2 (input from button)
//set up interrupt for cup sensor

bool increaseVolume = false; // true when interrupt occurs indicating flow pulse detected
bool volFlag=false; // flag indicating that the volume limit hasn't been reached
bool openSolenoid = false; // flag indicating solenoid should be closed, true when button
pressed
//bool cupSensed=false;

void interrupt(void){
if(int1IF){
increaseVolume=true; //Indicate that there is something to do int1IF=0; //reset
}
if(int2IF){
openSolenoid=true; // indicate button has been pressed and allow liquid to flow int2IF=0;
//reset flag
}
}
//add interrupt for cup sensor void main(void){
intcon=0b10000000; // enable global interrupts intcon2=0b00110000; // enable intedge
interrupt intcon3=0b01011000; // enable interrupt flag
LCD_init(1); // initialize LCDs trisa.1=0;
trisa=1;
trisb.1=1; // set port b.1 to input (pulse input from flow sensor)
trisb.2=1; // set port b.2 to input (input from button)
trisb.6=0; // make this an output port, to control solenoid, set high to open solenoid valve
// add an input to detect highs/lows from cup sensor

unsigned short volume = 0;

init_usart(129); //Set baud rate

hypTerm_printStr("Welcome to AutoBev... Press the red button to start pouring... ");
LCD_printf("Welcome to AutoBev... Press the red button to start pouring... ");

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 21 Low-Level Design

while (openSolenoid==false){ //add cupSensed=false to this statement
} //do nothing while waiting for button press

latb.6=1; //send high signal to solenoid to open valve hypTerm_printStr("Pouring your
beverage... ");

float conv = 165.61176576; //Flow sensor: ~165.61176576 pulses/ounce
int inc = 1; //set increment value (volume increases by 1 unit each limit pulses)
int limit = 1400; // set volume limit (# of pulses before increment)

//while loop runs until the volume limit has been reached while (volFlag==false) {
//when a pulse is received from the flow sensor, this if statement executes if
(increaseVolume) {
volume=volume + inc; // volume in milliters increaseVolume=false; // reset flag
// executes if the volume is greater than the limit to close solenoid valve if (volume > limit)
{
latb.6=0; // turn off solenoid, close the value volFlag=true; // break out of while loop
hypTerm_printStr("Finished Pouring... Amount Poured: ");
hypTerm_dec((volume-inc)/conv); //display the amount of volume poured
hypTerm_printStr(" \n");
} // close volume if loop
} //close increaseVolume if loop

} //close infinite while loop

}

Figure 10. Autobev Dispensing Control Program

5.6 PC to Microcontroller USB Interface

The computer interface is going to communicate with the microcontroller in order for the
software program controlling the drink dispensing system to know whether or not the user
wants to pour a specific amount, pour an unknown amount of beverage, or if a drink has
even been
ordered.

5.6.1 USB Hardware:

To convert the asynchronous serial messages transmitted by the microcontroller into the
standard USB signals transmitted by the PC through the COM port, an intermediary is
needed. The device we have chosen to do this is the FT232Rl from FTDI. Professor Mike
Schafer of the University of Notre Dame designed the circuit governing the operation of
this device. The circuit is used with his permission and shown in the following figure:

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 22 Low-Level Design

Figure 11. FT232RL Schematic

This USB signal from the PC carries a 5V signal. This 5V signal will be used to power the
board. This 5V voltage is run directly into a 3.3V regulator, as shown in the following
figure:

Figure 12. Regulator Circuit.

5.6.2 Testing:

To test this USB protocol, a variety of bytes will be sent from the microcontroller to a
terminal. If all these bytes can be received correctly, than microcontroller transmission and
PC reception have been verified. Then, a variety of bytes will be sent from the PC
program to a microcontroller and displayed on an LCD screen. If these bytes are received
correctly, then microcontroller reception and PC transmission will have been verified.
Finally, the microcontroller and the PC program will be connected together for two-way

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 23 Low-Level Design

communication. If successful, the USB protocol will pass this test. The following section
goes more into detail of the protocol we plan to have working for the final project.

5.6.3 PC to Microcontroller Protocol

There are two modes of communication, one in which a drink has not been ordered and
one in which a drink is not being poured. These modes are summarized below.

Mode 1: A Drink Has Not Been Ordered

In this mode the microcontroller will sit idle waiting to hear from the PC. When a
customer decides to pour his or her own beverage, a single byte will be sent to the
microcontroller to indicate either the size of the drink order, or if the customer is paying
per ounce. The microcontroller responds to the PC during the next mode, i.e. after it has
started pouring.

Mode 2: A Drink is Being Poured

Once the microcontroller starts pouring, it will send three bytes to the PC every time
it has poured 0.091 ounces (corresponding to 15 pulses from the flow sensor). These
three bytes will contain the status of the microcontroller (if it is still pouring and if a cup is
there) as well as a 16-bit number that contains the amount of volume that has been
poured. The PC will interpret the value received in units of 100µL. For example, if the
microcontroller sends a value of 5, the PC knows that 500µL have been poured. Using
this size unit will enable a maximum value of 221.6 ounces (or 3.6 pitchers) to be sent
over the interface with a resolution of 0.00338 ounces.

When the PC receives these three bytes from the microcontroller it will respond with the
same type of byte that it sent in the first mode. This time however the message acts as an
acknowledgement that the microcontroller is pouring and that it should continue.

PC Microcontroller

Byte 1:

Microcontroller PC

Byte 1 (Status):

Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
Success/Error Message

Type
Start or

Stop
Order
Type

Size 1 Size 2 Size 3 Filler

1 = success
0 = error
(resend)

1 =
start/stop
0 = new

order

1 = start
pouring
0 = stop
pouring

1 = preset
size

0 = pay
per oz.

1 = 12
ounce
0 = no
order

1 = 16
ounce
0 = no
order

1 = 60
ounce
0 = no
order

DC

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 24 Low-Level Design

Byte 2 (First 8 bits of 16-bit value of volume):

Bit 0-7

Bits 0-7 of Volume Poured
Value (in 100µL)

Byte 3 (Last 8 bits of 16-bit value of volume):

Bit 0-7

Bits 8-15 of Volume Poured
Value (in 100µL)

6 Bill of Materials

Subsystem Description Distributor Part # Quantity Unit Price Total Cost
FS&CC SwissFlow SF800 Swissflow 2 0.00 $0.00
FS&CC ETI 12V Solenoid (US5311162) stock 2 0.00 $0.00
FS&CC MOSFET N-CH 30V 1.7A SSOT3 Digi-key NDS355ANCT-ND 2 0.51 $1.02
FS&CC 50 ohm Resistor stock 2 0.00 $0.00
FS&CC 2200 ohm Resistor Digi-key RHM10.0KCRCT 2 0.00 $0.00
FS&CC 500 ohm Resistor stock 2 0.00 $0.00
FS&CC Diode 1N4001 Digi-key 1N4001FSCT-ND 2 0.31 $0.62
FS&CC toggle switch stock 2 0.00 $0.00

FS&CC Ander-Lign Compression
Connector (Brass)

Home Depot

2

2.19

$4.38

FS&CC Clear Vinyl Tubing Home Depot 1 2.98 $2.98

FS&CC Danby 5.8 Cu. Ft. Capacity Keg
Cooler

loaned

1

0.00

$0.00

FS&CC / Micro 12v voltage reg. Digi-key 497-1210-1-ND 1 0.81 $0.81

Card Scan

Unitech America MS240 Mag
Stripe Reader, MSR Track I, II&III,

USB

Unitech America (via

provantage.com)

Manufacturer Part# MS240-1T2

1

37.18

$37.18

MicroController slide DPDT switch Digi-key SW116-ND 1 0.81 $0.81
MicroController 300 ohm SMD resistor Digi-key P300DACT-ND 10 0.20 $2.04
MicroController 10k SMD resistor Digi-key P10KDACT-ND 2 0.00 $0.00
MicroController 4.7k smd resistor Digi-key P4.7KDACT-ND 1 0.00 $0.00
MicroController .1uF smd capacitor Digi-key ECJ-2VB1E104K 3 0.00 $0.00
MicroController 10uF capacitor Digi-key PCC2225CT-ND 1 0.00 $0.00
MicroController 4.7uF capacitor Digi-key PCC1842CT-ND 1 0.00 $0.00
MicroController red led Digi-key 160-1422-1-ND 1 0.00 $0.00

Bit 0 Bit 1 Bit 2 Bit 3-7
Success/Error Status Cup

Sensor
Filler

1 = success
0 = error
(resend)

1 = still
pouring

0 = done
pouring

1 = cup
present

0 = no cup

DC

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 25 Low-Level Design

MicroController green led Digi-key 160-1423-1-ND 9 0.00 $0.00
MicroController diode Digi-key 1N4148WTPMSCT-ND 1 0.00 $0.00
MicroController ferrite beed Digi-key 445-2201-1-ND 1 0.00 $0.00
MicroController 3.3v voltage reg. Digi-key 497-1235-1-ND 1 0.00 $0.00
MicroController 20MHz ceramic resonator Digi-key 490-4717-1-ND 1 0.00 $0.00
MicroController USB connector Digi-key 609-3656-ND 1 0.00 $0.00
MicroController FT232RL-REEL Digi-key 768-1007-1-ND 1 0.00 $0.00
MicroController PIC18LF6722-I Microcontroller Digi-key PIC18LF6722-I/PT-ND 1 0.00 $0.00
MicroController Power Connector Digi-key CP-002A 1 0.00 $0.00
MicroController Board Programmer Provided in kit 1 0.00 $0.00

Bartender
Interface

25' Cat5e Ethernet Cable

Provided

1

0.00

$0.00

Bartender LC Computer Provided 1 0.00 $0.00
User Interface LC Computer Provided 1 0.00 $0.00

Figure 13. Bill of Materials

7 Conclusions

This project addresses a problem that limits the revenue of service establishments such as
bars and restaurants. The proposed solution will eliminate the need for a server to deal with
the time consuming payment process. We acknowledge that throughout the completion of
this project, many obstacles will be encountered. The implementation of software
subsystems that must communicate with one another will require extensive research and a
good deal of learning. The hardware portion is also an extensive portion of the project that
will take time and consideration.

If our group succeeds, we expect that our project will help to increase the efficiency of
drinking establishments through the automation of the ordering and payment process. The
AutoBev system is a marketable design that can be easily integrated into any service
establishment.

Autobev Clark, Garcia, Macomber, Pomerenke

Spring 2011 26 Low-Level Design

8 References

8.1 Spec Sheets
Flow Sensor: http://www.swissflow.com/en/SF800/applications/food_and_beverage

Microcontroller: http://parts.digikey.com/1/parts/563243-ic-pic-mcu-flash-64kx16-
64tqfp-pic18lf6722-i-pt.html

8.2 General Information

Magnetic Stripe Card: http://en.wikipedia.org/wiki/Magnetic_Stripe_Reader

Keg Cooler: http://www.coolerdirect.com/keg-coolers-danby-dkc645bls-3370-
prd1.htm

http://www.swissflow.com/en/SF800/applications/food_and_beverage
http://parts.digikey.com/1/parts/563243-ic-pic-mcu-flash-64kx16-64tqfp-pic18lf6722-i-pt.html
http://parts.digikey.com/1/parts/563243-ic-pic-mcu-flash-64kx16-64tqfp-pic18lf6722-i-pt.html
http://en.wikipedia.org/wiki/Magnetic_Stripe_Reader
http://www.coolerdirect.com/keg-coolers-danby-dkc645bls-3370-prd1.htm
http://www.coolerdirect.com/keg-coolers-danby-dkc645bls-3370-prd1.htm

